ETH:zurich
2 CSem

Google

00!
NeRF-GAN Distillation for Efficient 3D-Aware Generation with Convolutions °e

Mohamad Shahbazi?! Evangelos Ntavelis’®>  Alessio Tonioni?  Edo Collins?® Martin Danelljan? Danda Paudel® Luc Van Gool’

lComputer Vision Lab, ETH Zurich, Switzerland 2Google Zurich 3ML & Robotics, CSEM, Switzerland

Summary

Method Experiments

Goal
e Efficient inference of 3D-aware GANs
convolutional pose-conditioned generators

Qualitative Results on FFHQ and Shapenet Cars

The Proposed Method
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Model
® A convolutional generator conditioned on the latent code of
the pretrained NeRF-GAN and the target viewpoint
Training
® The pretrained NeRF-GAN as the teacher for supervision
® Reconstruction and adversarial objectives
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Method
e Distilling a pretrained NeRF-GAN into a pose-conditioned
convolutional generator
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Conclusion

e Comparable 3D consistency and the image quality with the
pretrained NeRF-GAN, while benefiting from the )_
computational efficiency of the convolutional architecture. /»? Netwon
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%ﬁ - = | T o | EG3D [5] 50 0.0018 29 0.0003 3.5 0.0017
| PC-GAN 19.3  0.0085 45 0.0009 6.1 0.0018
@Frozenwelghts """""""" LiftGAN [48]  29.8* - - - - -
\ x c SURF 31.1 0.0153 - - - -
Ours (ST2) 6.6 0.0019 3.8 0.0011 3.1 0.0013
Ours (ST3) 6.8 0.0023 32 0.0007 3.1 0.0012
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- Quantitative Comparison of 3D Consistency
Memory Consumption e Stage 1: training only with reconstruction loss Method Pose Acc. | 3D Landmark | ID 1
et ResSalE) SRS 3 O E) e Stage 2: training with reconstruction and adversarial losses :
200 EG3D [5] 0.002 0.018 0.75
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g = The proposed two-stage training leads to better 3D consistency! PC-GAN 0.009 0.062 056
2 1500 SURF 0.044 0.014 0.86
5 o , ] Ours (ST2) 0.002 0.023 0.75
5 o Mitigating Pose-Attribute Correlation Ours (ST3) 0.002 0.022 075
- . e Convolutional generators are prone to pose-attribute bias Examples of Inversion and Editing using Our Method
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