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TL;DR

Proposing an attribute editing method for GANs
• is agnostic on the underlying architecture
• can be applied as is to both 2D and 3D
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• Adaptive Instance Normalization

AdaIN(x, y) = σ(y)x − µ(x)
σ(x)

+ µ(y)

• Feature-wise Linear Modulation + SIREN

FiLM_SIREN(x) = sin(γ(y) ⊙ x + β(y))

More Information

Project GitHub Contact

Approach - LatentSwap3D

a) Identifying Relevant Latent Dimensions b) Attribute Editing on Latent Dimensions
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Qualitative Examples

3D GANs
Input Edited Consistency
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2D GANs
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Real Image Editing
Input Results on MVCGAN
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Compared to 2D Editing Methods
Input SeFa LCLR. IGAN. SFlow. Ours
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Quantitative Analysis

Semantic Correctness
π-GAN MVCGAN EG3D

Unedited 4% 3% 9%
IGAN. 81% 84% 85%
SFlow. 83% 78% 88%
Ours 88% 95% 93%

Identity Preservation

π-GAN MVCGAN EG3D
LCLR. 54% 61% 69%
SeFa 62% 64% 58%
IGAN. 30% 51% 71%
SFlow. 68% 65% 72%
Ours 74% 71% 73%

Ablation Study

• Consecutive Edits
Input + Blue Eyes + Smiling + Blonde + Gender + Age (↑)

• Impact of parameter top-K
Input Top-32

(1%)
Top-128

(7%)
Top-256
(12%)

Top-512
(18%)

Top-1024
(36%)

Top-2048
(46%)
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Conclusion & Limitations

• Exploring latent spaces of 3D GANs.

• Proposing a new method that enables attribute
editing for any pre-trained 2D or 3D generative
model without re-training or fine-tuning.

• Extending the method on real image editing by
using GAN inversion methods.

• Under-represented Attributes in GANs.

• Real image inversion capabilities of 3D GANs.

• Supervised method for finding semantic edits.


