

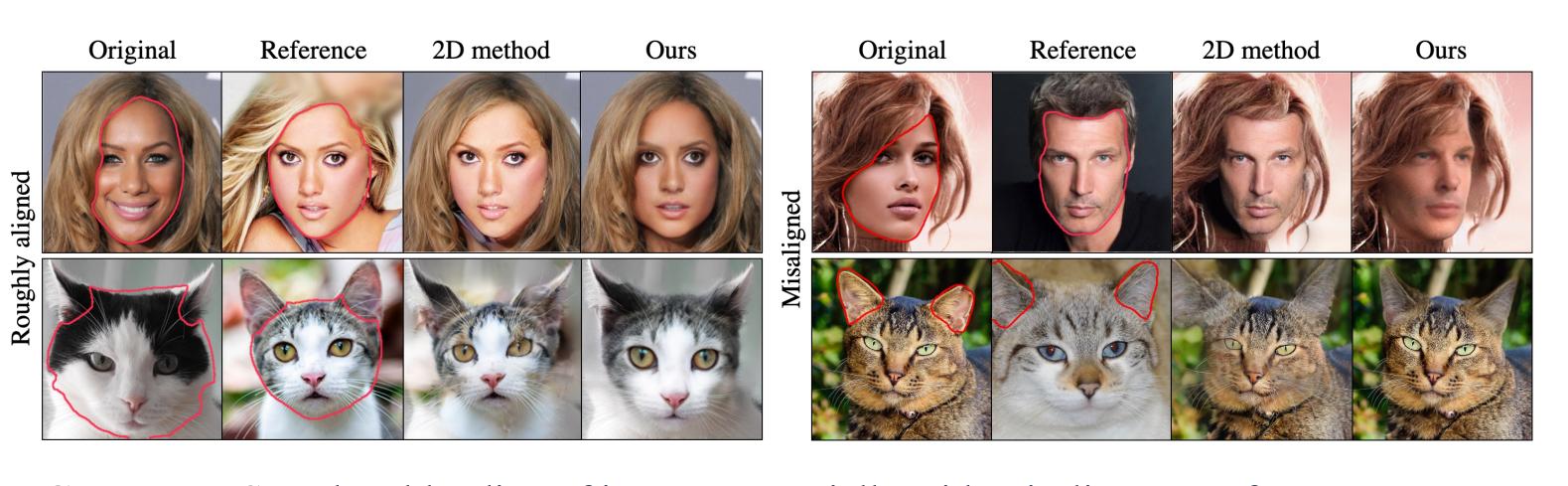
BlendNeRF: 3D-aware Blending with Generative NeRFs



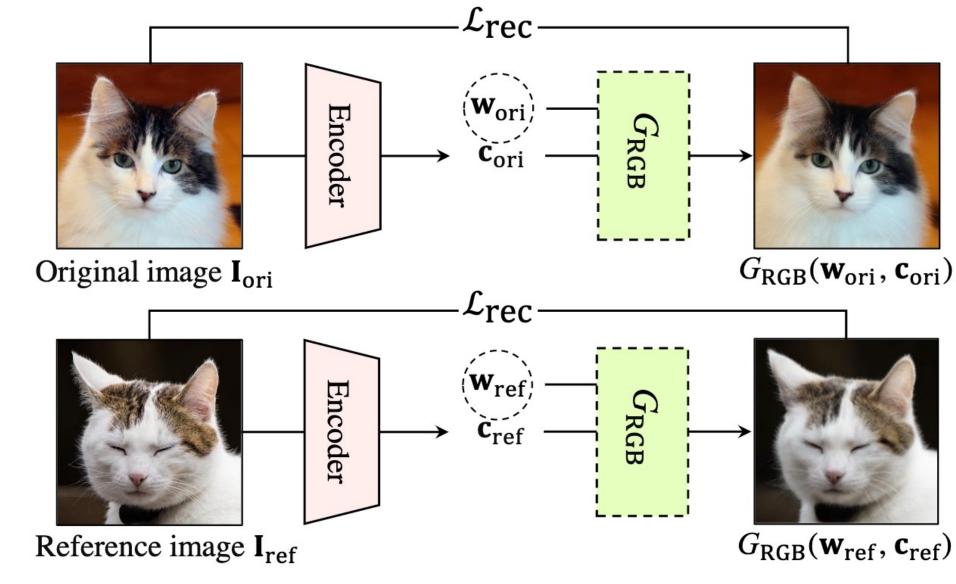
Jin-Hwa Kim^{1,2} Jun-Yan Zhu³ Hyunsu Kim¹ Yunjey Choi¹ Gayoung Lee¹ ²SNU AIIS ¹NAVER AI Lab ³CMU

Project: https://blandocs.github.io/blendnerf **Code**: https://github.com/naver-ai/blendnerf

Abstract



3D-aware alignment



We first use a CNN encoder to infer the camera pose of each input image.

Step 1. Given the camera pose **c**, we estimate the latent code **w** for each input using a reconstruction loss \mathcal{L}_{rec} .

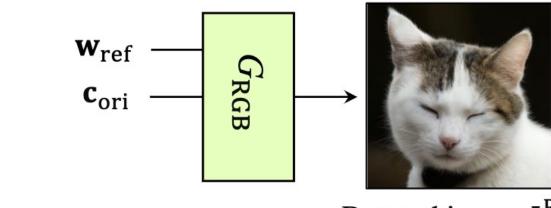
Challenge: Seamless blending of images, especially with misalignments from camera poses and object shapes

Solution: 3D-aware blending using generative Neural Radiance Fields (NeRF)

- **3D-aware Alignment:**
 - Estimate camera poses of the input images
 - Perform pose alignment for objects
- **3D-aware Blending:**
 - Utilizes volume density rather than raw pixel space only
 - Blend images in NeRF's latent representation space

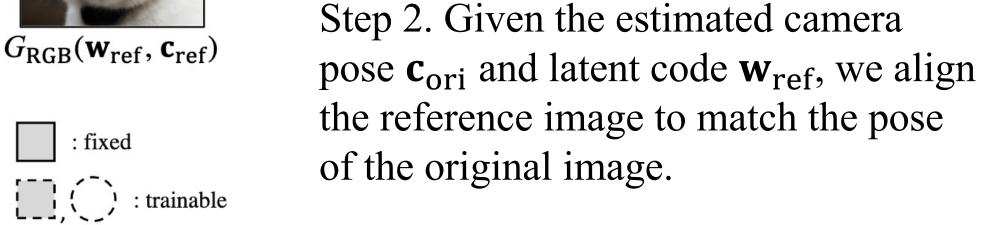
Step 1. Estimate camera poses and latent codes

Step 2. Global alignment (Rotation)

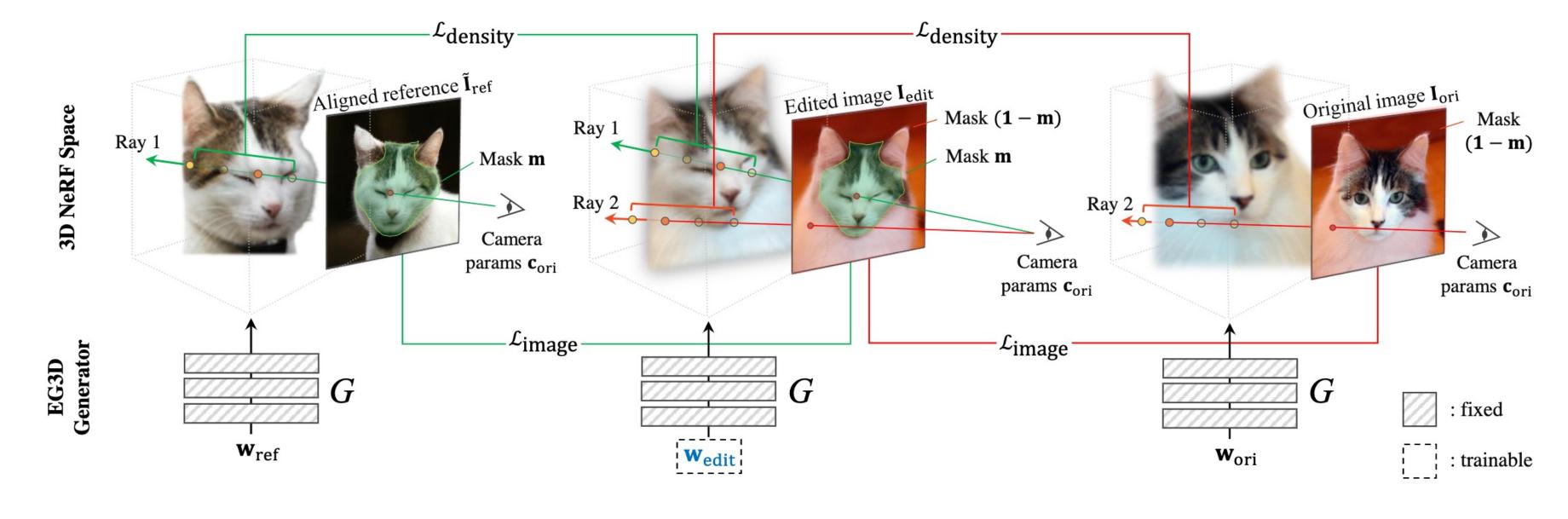


Rotated image I_{ref}^{R}

3D-aware blending



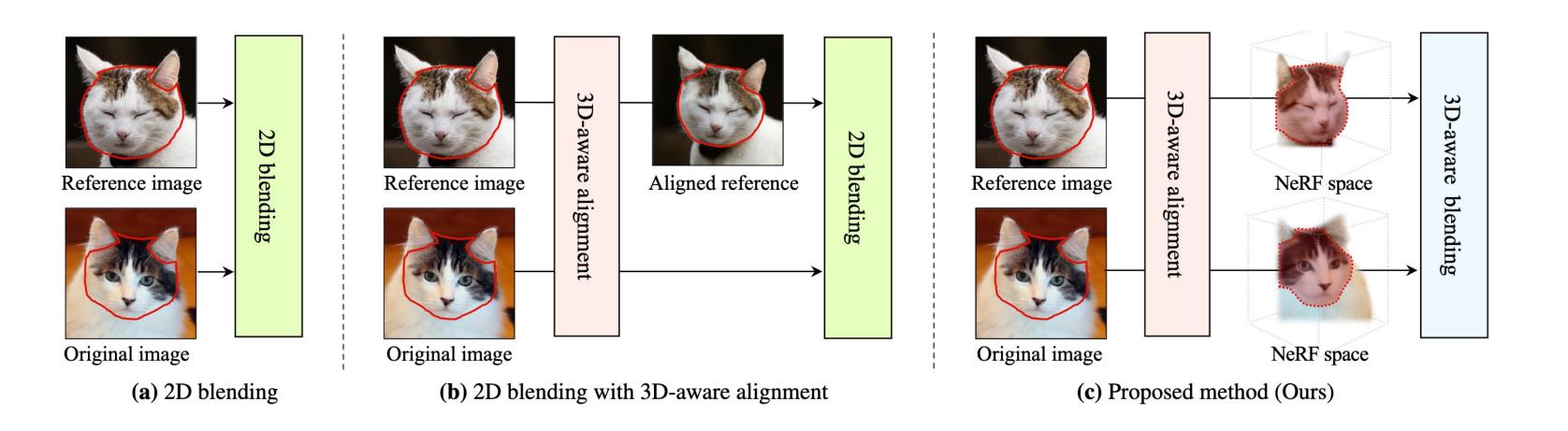
 $\mathbf{I}_{ref}^{\mathsf{R}} = G_{\mathsf{RGB}}(\mathbf{w}_{ref}, \mathbf{c}_{ori})$



: fixed

We aim to find the best latent code \mathbf{w}_{edit} to synthesize a seamless and natural output. To achieve

Comparison with Baselines



Red lines denote target blending parts.

(a) **2D blending**: 2D blending methods compose two images without any 3D-aware alignment. (b) **2D blending with 3D-aware alignment**: To address misalignment, we apply our 3D-aware alignment method to existing 2D blending methods.

(c) **Proposed method**: We propose 3D-aware blending after applying our 3D-aware alignment. Note that all methods do not use 3D labels or 3D morphable models.

this goal, we exploit both 2D pixel constraints (RGB value) and 3D geometric constraints (volume density). With the proposed image-blending and density-blending losses, we optimize the latent code **w**_{edit}.

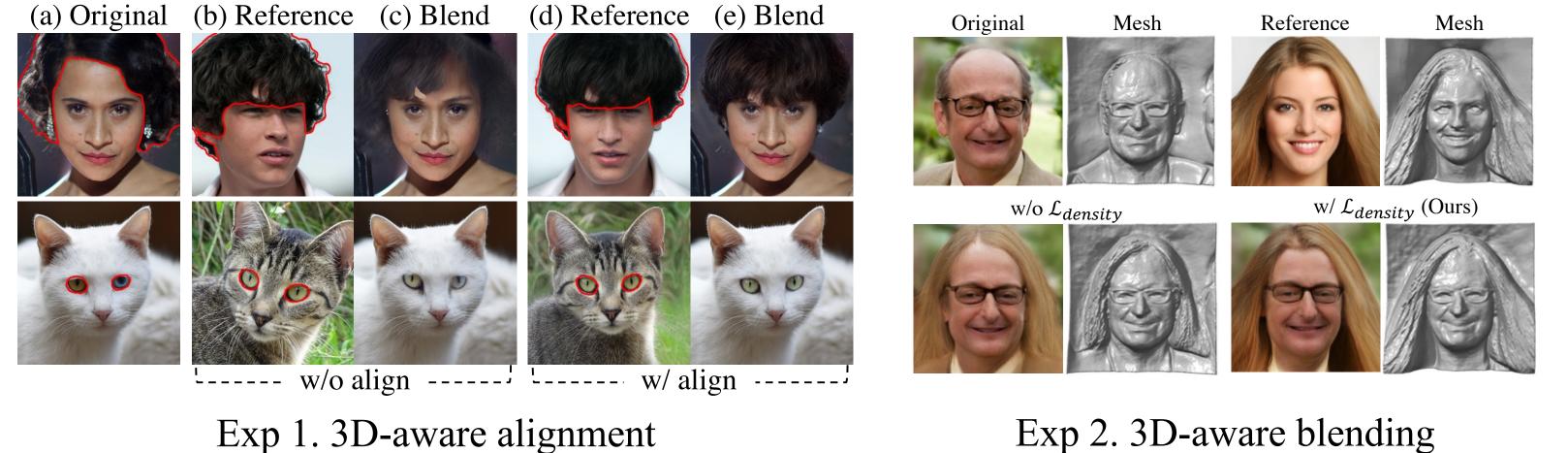
Image blending loss

$$\begin{split} \mathcal{L}_{\text{image}} &= \left\| (\mathbf{1} - \mathbf{m}) \circ \mathbf{I}_{\text{edit}} - (\mathbf{1} - \mathbf{m}) \circ \mathbf{I}_{\text{ori}} \right\|_{1} \\ &+ \lambda_1 \mathcal{L}_{\text{LPIPS}}((\mathbf{1} - \mathbf{m}) \circ \mathbf{I}_{\text{edit}}, (\mathbf{1} - \mathbf{m}) \circ \mathbf{I}_{\text{ori}}) \\ &+ \lambda_2 \mathcal{L}_{\text{LPIPS}}(\mathbf{m} \circ \mathbf{I}_{\text{edit}}, \mathbf{m} \circ \mathbf{I}_{\text{ref}}), \end{split}$$

Density blending loss

$$\mathcal{L}_{\text{density}} = \sum_{\boldsymbol{r} \in \mathcal{R}_{\text{ref}}} \sum_{\boldsymbol{x} \in \boldsymbol{r}} \|G_{\sigma}(\mathbf{w}_{\text{edit}}; \boldsymbol{x}) - G_{\sigma}(\mathbf{w}_{\text{ref}}; \boldsymbol{x})\|_{1} \\ + \sum_{\boldsymbol{r} \in \mathcal{R}_{\text{ori}}} \sum_{\boldsymbol{x} \in \boldsymbol{r}} \|G_{\sigma}(\mathbf{w}_{\text{edit}}; \boldsymbol{x}) - G_{\sigma}(\mathbf{w}_{\text{ori}}; \boldsymbol{x})\|_{1}$$

Ablation studies

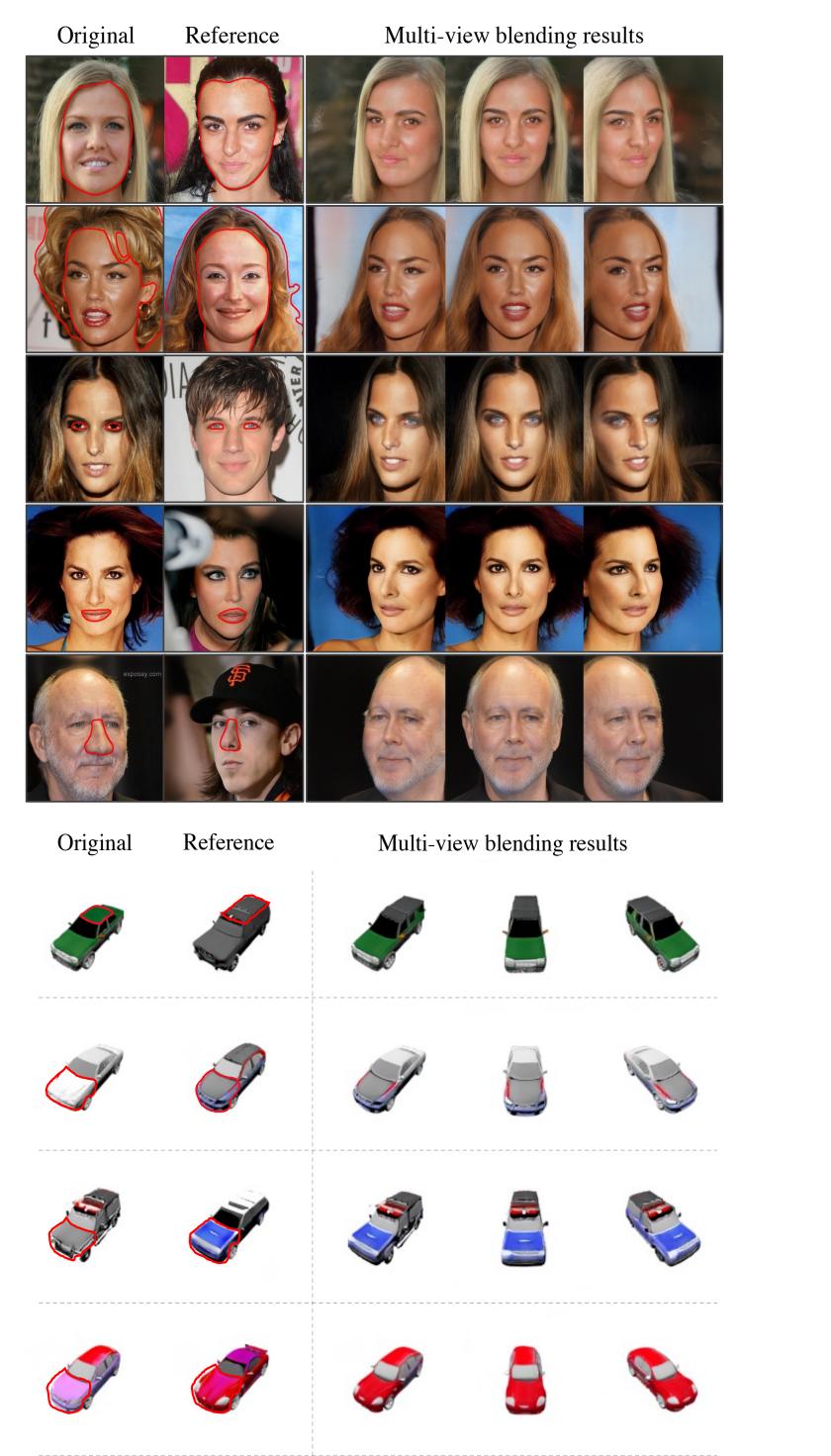


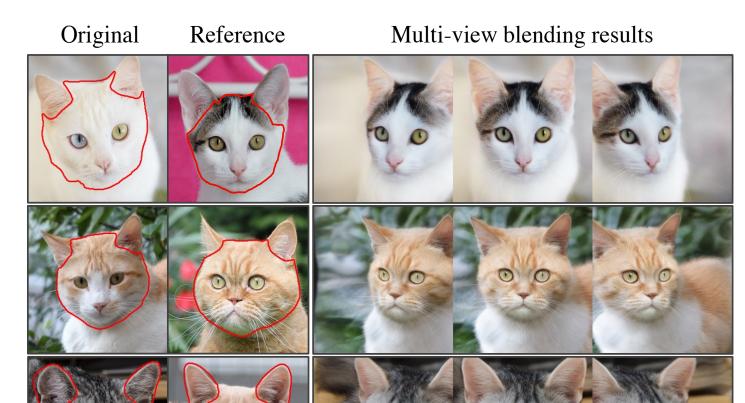
Exp 2. 3D-aware blending

Blending results in various datasets

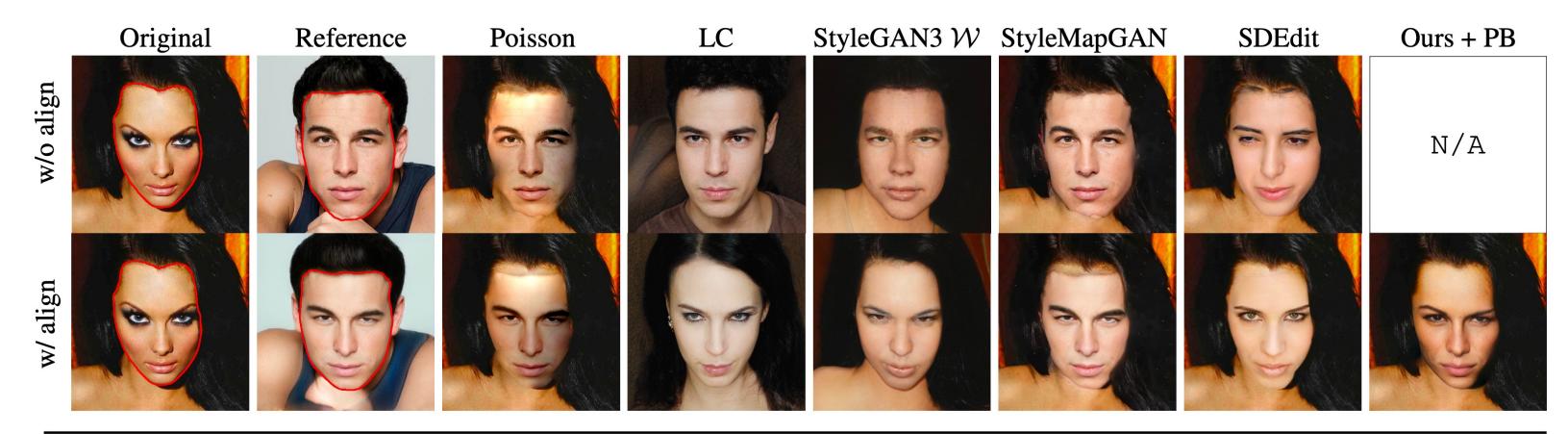
EG3D backbone : CelebA-HQ, AFHQ-Cat, ShapeNet-Car

StyleSDF backbone: FFHQ





Quantitative results



Method	w/o align (baseline only)			w/ 3D-aware align		
	$KID\downarrow$	$\mathrm{LPIPS}_m \downarrow$	$mL_2\downarrow$	$KID\downarrow$	$\mathrm{LPIPS}_m\downarrow$	$mL_2\downarrow$
Poisson Blending [72]	0.006	0.4203	0.0069	0.005	0.2355	0.0051
Latent Composition [11]	0.012	0.4735	0.0388	0.012	0.4487	0.0321
StyleGAN3 W [45]	0.016	0.4379	0.0353	0.017	0.3921	0.0307
StyleGAN3 W + [45]	0.025	0.4634	0.0462	0.023	0.4086	0.0391
StyleMapGAN (32×32) [50]	0.007	0.3792	0.0118	0.006	<u>0.1989</u>	0.0045
SDEdit [64]	0.011	0.3857	0.0076	0.008	0.3427	0.0003
Ours	0.013	0.2046	0.0050	0.013	0.2046	0.0050
Ours + Poisson Blending	0.002	0.1883	0.0007	0.002	0.1883	0.0007

Multi-view blending results Reference Original